SANDAG Performance Monitoring

- Key Performance Measurement/Monitoring
 - Monitoring System Performance
 - Identify System Deficiencies
 - Track Transportation Trends
 - Determine Improvements
 - 20009 Performance Indicator Data Management
 - 30002 RCP, Annual Performance Monitoring Report
 - 40007 Develop and Enhance Tools for Performance Monitoring

Performance Measures

- Baseline Indicators
 - Speeds
 - Travel Times
 - Usage (i.e., volumes, ridership)
- Statewide Freeway
 Performance
 Measurement System
 (PeMS) Key Tool
 - Collect freeway detector data every 30 seconds, 24/7

SANDAG Vision

- Develop Multi-Modal PeMS to include real-time Transit and Arterial Data and Improve Reporting (under development)
 - A-PeMS
 - T-PeMS
- Develop Door to Door Travel Times and Compare Trip Times Across All Modes
- Examine System Integration:
 - Planning Level Performance Monitoring
 - Real-time Transportation Management (ICM)
 - Traveler Information 511

Characteristics of Arterial Data

Quantities

Volume, occupancy (% of time the detector is occupied), speed and "presence"

Time Intervals

Per second, coordinated per signal cycle, uncoordinated per 30-secs/5-mins

Detector Locations

- 1. Advance/system/mid-block detectors
 - Hundreds of feet upstream of intersection
- 2. Stop-bar/stopline
 - Immediately upstream of intersection, most are incapable of counting vehicles
- 3. Departure
 - Immediately downstream of stop-bar or intersection

Signal Timing Information

- 1. Cycle length, phase sequence, green times, timing offsets between intersections
- Event data (reasons why the phase changed)
 - 1. Gap out (requests from other approaches, see a gap on this approach)
 - 2. Max out (requests from other approaches, max green time hit)
 - 3. Force off (max green extension timer hit)

Transit Data Characteristics

Main data elements available:

- Schedules describing the routes, trips, stop times, fares for a transit operator
- Automatic Passenger Counts (APCs)
 - The number of people that get on and off the bus at each stop.
- GPS-based location information, Automatic Vehicle Location (AVL)
 - Can provide timepoint-to-timepoint analysis (running time)
 - Or it can provide random sampling of the locations of the buses
- Other types are less common: farebox information, odometer readings, wheelchair lifts, etc.

Performance measures:

- Static Level of Service (based on schedules)
 - Percentage of residences within a specific distance of a transit stop
 - Frequency of scheduled trips can be related to a level of service
 - Number of trips per hour/day
- Demand Analysis (based on passenger count data)
 - Demand along a route
 - Passenger crowding
 - Percentage of seats occupied (capacity utilization)
- Effectiveness (based on AVL data)
 - Percentage of trips on time (at departure, arrival and en route)
 - Schedule adherence
 - Travel time (to compare to other modes)

Near Term Efforts - A-PeMS/T-PeMS

Arterial Performance Measures

- To properly compute travel time for an arterial we need:
 - Signal timing data
 - Count data (coordinated with signal timing data)
- Working on deploying additional detectors and extracting data at existing intersections
- Working on enhancing PeMS back end system functionality (A-PeMS then T-PeMS)

Transit Performance Measures

- Working to setup a real-time feed for data
- Working on extensions inside of PeMS to compute transit measures

SANDAG VISION -

Enhance Performance Monitoring Efforts along arterials and Transit Provide us with the ability to:

- Determine freeway, arterial, transit travel times
- Track Transportation System Trends
- Provide Arterial and Transit real-time
 Transportation Information
- Measure impacts/benefits on to Transportation System